HTS Compounds

  • Our HTS Compounds Collection

  • Compound Collection Enhancement (How we design our HTS compounds)

  • Our Features - Your Benefits

  • Success story of using our HTS compounds

 

Our HTS Compounds Collection

Life Chemicals' collection of small organic molecules for high-throughput screening currently contains about 929,000 compounds, including more than 427,000 off-the-shelf items, and is being permanently replenished with de-novo designed products with optimal physicochemical parameters for drug discovery. Over 507,000 structures readily available through in-house developed and validated synthetic procedures are represented in our Tangible database. The feasibility of syntheses is 90%+.

You are welcome to download our databases or visit online shop.

 

Compound Collection Enhancement (How we design our HTS compounds)

To design new compounds we use scaffold-based approach with subsequent filtering by rigorous criteria, that allows us to enhance our collection by every single compound submitted to stock. Quality of the products is controlled by NMR and GC/LCMS analyses, the purity is at least 90% backed with corresponding NMR and/or LC/GCMS data. Thus all items in our Collection can be distinguished as original, most carefully selected, diverse, well-characterized and pure, lead-like and drug-like new molecules representing wide chemical space.

Our HTS compounds collection is mainly built around 2,800 original scaffolds. Decoration of scaffolds can be done also using customers' requirements (for more information please visit Custom Synthesis).

The diagrams below reflect the summarized parameters of compounds submitted to our stock over the last 5 years within the framework of in-house Compound Collection Enhancement (CCE) program:

Life Chemicals HTS compounds MW-353

Distribution over MW

Life Chemicals HTS compounds logP

Distribution over LogP

Life Chemicals HTS compounds RotB

Distribution over RotB

Life Chemicals HTS compounds Fsp3

Distribution over Fsp3

HTS Compounds

Number of compounds available in stock

De-novo design of compounds by experienced R&D team

Original and diverse chemical entities

Standards for drug-likeness e.g. Lipinski's "Rule of five", Veber criteria and dissimilarity evaluation applied

Optimal physio-chemical properties for drug
discovery purposes

90%+ purity confirmed by NMR and LCMC

High-quality and well characterized compounds

Minimum 75 mg available off-the-shelf

Immediate delivery of compounds for urgent projects

Validated synthetic routes available

Guaranteed re-supply and possible fast scale-up

Success story of using our HTS compounds

The compounds from our HTS collection are successfully used in numerous drug discovery projects of our customers providing high quality hits and facilitating investigation and validation of new promising biological targets. Below you can see the list of publications of our customers on their advances that came about through the employment of Life Chemicals' compounds:

2015

  1. MRC Laboratory for Molecular Cell Biology, University College London, London, U.K; Prak, K., Kriston-Vizi, J., Chan, A. E., Luft, C., Costa, J. R., Pengo, N., & Ketteler, R. Benzobisthiazoles Represent a Novel Scaffold for Kinase Inhibitors of CLK Family Members. Biochemistry. 2015. DOI: 10.1021/acs.biochem.5b01128.

2014

  1. The University of Alabama, Birmingham; Southern Research Institute, Birmingham, USA; Liu, Z.; Galemmo, R. A., Fraser, K. B. et al. Unique Functional and Structural Properties of the LRRK2Protein ATP-binding Pocket. The Journal of Biological Chemistry. 2014. 289, 47, 2937–32951. DOI: 10.1074/jbc.M114.602318

  2. Max Planck Institute of Colloids and Interfaces, Potsdam; Freie Universität Berlin, Berlin, Germany; Aretz, J.; Wamhoff, E.-C.; Hanske J. et al. Computational and experimental prediction of human C-type lectin receptor druggability.  Frontiers in Immunology. 2014. http://dx.doi.org/10.3389/fimmu.2014.00323

2013

  1. Exonhit Inc., Gaithersburg, MD, USA; Exonhit, Paris, France Vinayaka Kotraiah, Diego Pallares, Deanna Toema et al. Identification of aldehyde dehydrogenase 1A1 modulators using virtual screening. J. of Enzyme Inhibition and Med. Chem. 2013. 28, 3, 489-494. DOI:10.3109/14756366.2011.653353

2012

  1. University of Nottingham, Nottingham, UK; University of California, USA; University of Cagliari, Cagliari, Italy Wall, R. J.; He, G.; Denison, M. S. et al. Novel 2-amino-isofla­vones exhibit aryl hydrocarbon receptor agonist or antagonist activity in a species/cell-specific context. Toxicology. 2012. 297, 1–3, 26–33. http://dx.doi.org/10.1016/j.tox.2012.03.011

  2. Fred Hutchinson Cancer Research Center, Seattle; Scripps Research Institute; Molecular Screening Center, Translational Research Institute, Florida, USA Amundsen, S. K.; Timothy Spicer, Ahmet C. Karabulut et al. Small-Molecule Inhibitors of Bacterial AddAB and RecBCD Helicase-Nuclease DNA Repair Enzymes. ACS Chem. Biol. 2012. 7, 5, 879–891. http://dx.doi.org/10.1021/cb300018x

  3. Fox Chase Cancer Center, Philadelphia, USA Jaffe, E. K.; Lawrence, S. H. Allostery and the dynamic oligomerization of porphobilinogen synthase. Archives of Biochemistry and Biophysics. 2012. 519, 144-153. DOI: http://dx.doi.org/10.1016/j.abb.2011.10.010

  4. The Ohio State University, Columbus, Ohio, USA Zhu, X.; Pandharkar, T.; Werbovetz, K. Identification of New Antileishmanial Leads from Hits Obtained byHigh-Throughput Screening. ASM Journal. 2012. 56, 3, 1182-1189 DOI: http://dx.doi.org/10.1128/AAC.05412-11

  5. University of Illinois at Chicago, Chicago, USA Lee, H.; Torres, J.; Truong L. Reducing agents affect inhibitory activities of compounds: Resultsfrom multiple drug targets. Analytical Biochemistry. 2012. 423, 1, 46-53. doi:10.1016/j.ab.2012.01.006

  6. Indian Academy of Sciences, Bangalore, India Guru Nanak Khalsa College of Arts, Mumbai, India D. Jaimini,D.; Shabnam, A.A.; Sarka C. In-Silico Feasibility of Novel Biodegradation Pathways For1-Naphthyl Methylcarbamate. American-Eurasian Journal of Toxicological Sciences. 2012. 4, 2, 89-93.

  7. University of Washington, Seattle, Washington, USA Bedard, K. M.; Wang M. L.; Proll, S. C.; Loo Y-M. et al. Isoflavone Agonists of IRF-3 Dependent Signaling Have AntiviralActivity against RNA Viruses. J. of Virology. 2012.86,13, 7334-7344. doi: 10.1128/JVI.06867-11.

  8. Università di Napoli, Napoli, Italy; IstitutoItaliano di Tecnologia, Genova, Italy; Dipartimento di ScienzeFarmaceutiche, Università di Pisa, Pisa, Italy; The Kennedy Institute of Rheumatology Imperial College, London, United Kingdom.  La Pietra, V.; Marinelli, L.; Cosconati, S.; Di Levac, F. S.; Nuti, E.; Santamaria, S.; Pugliesi, I.; Morelli, M.; Casalini, F.; Rossello, A.; La Motta, C.; Taliani, S.; Visse, R.; Nagase, H.; da Settimo, F.; Novellino, E. Identification of novel molecular scaffolds for the design of MMP-13 inhibitors: A first round of lead optimization. European J. of Med. Chem. 2012. 47,143-152. doi:10.1016/j.ejmech.2011.10.035

  9. University of Illinois at Urbana–Champaign; University of California, San Diego, USA. Lin, F-Y.; Zhang,Y.; Hensler M. et al. Dual Dehydrosqualene/Squalene Synthase Inhibitors: Leads for InnateImmune System-Based Therapeutics. ChemMedChem Communications. 2012. 7, 4,561-564. DOI: 10.1002/cmdc.201100589.

2011

  1. EmoryUniversity,Emory University School of Medicine, Atlanta, Georgia, USA Acker, T. M.; Yuan, H.; Hansen K. B. et al. Mechanism for Noncompetitive Inhibition by Novel GluN2C/D N-Methyl-D-aspartate Receptor Subunit-Selective Modulators. Molecular Pharmacology. 2011. 80, 5, 782-795. doi: 10.1124/mol.111.073239

  2. Southern Research Institute, USA Reynolds, R. C.; Ananthan S.; Faaleolea E. et al. High throughput screening of a library based on kinase inhibitor scaffolds against Mycobac­terium­tuberculosis H37Rv. Tuberculosis. 2011. 92, 1, 72-83. doi:10.1016/j.tube.2011.05.005

  3. World Health Organization, Geneva, Switzerland Nwaka, S.; Besson, D.; Ramirez B. et al. Integrated Dataset of Screening Hits against Multiple Neglected Disease Pathogens. PLoSNeglected Tropical Diseases. 2011. DOI: 10.1371/journal.pntd.0001412

  4. Baylor College of Medicine, Houston, TX; University of Southern California Keck School of Medicine, Los Angeles, USA Redell, M. S.; Ruiz, M. J.; Alonzo T. A. et al. Stat3 signaling in acute myeloid leukemia: ligand-dependent and –independent activation and induction of apoptosis by a novel small- molecule Stat3 inhibitor. Blood J. 2011. 117, 21, 5701-5709. DOI: http://dx.doi.org/10.1182/blood-2010-04-280123

  5. University of California, San Diego, USA Kouznetsova, V. L.; Tsigelny, I. F.; Nagle M. A. Elucidation of common pharmacophores from analysis of targetedmetabolites transported by the multispecific drug transporter — Organicanion transporter. Bioorganic & Medicinal Chemistry. 2011. 19, 11, 3320-3340. doi:10.1016/j.bmc.2011.04.045

  6. University of Exeter, U.K.; University of Washington, Seattle, USA Norville, I. H.; O’Shea, K.; Sarkar-Tyson M. et al. Structure of a Burkholderia pseudomallei immunophilin-inhibitor complex. Biochemical J. 2011. 437, 3, 413-422. DOI: 10.1042/BJ20110345

  7. University of Pittsburgh, Pennsylvania; University of Idaho, Idaho, USA Kamau, E.; Meehan, T.; Lavine M. D. et al. A Novel Benzodioxole-Containing Inhibitor of Toxoplasma gondii Growth Alters the Parasite Cell Cycle. Antimicrobial Agents And Chemotherapy. 2011. 55, 12, 5438-5451. doi: 10.1128/AAC.00455-11

2010

  1. Dana-Farber Cancer Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston; Cancer Drug Assays, Dana-Farber/Harvard Cancer Center and Harvard Medical School, Boston, USA  Heiden, M. G. V.; Christofk, H. R.; Schuman, E.; Subtelny, A. O.; Sharfi, H.; Harlow, E. E.; Xian, , J.; Cantley, L. C. Identification of small molecule inhibitors of pyruvate kinase M2. Biochemical Pharmacology. 2010. 79, 8, 1118-1124. doi:10.1016/j.bcp.2009.12.003

  2. Dipartimento di Scienze Farmaceutiche, Università di Modena e Reggio Emilia, Modena, Italy Rio, A. D.; Moura Barbosa, A. J.; Caporuscio F.; Mangiatordi G. F. CoCoCo: a free suite of multiconformational chemical databases for high-throughput virtual screening purposes. MolecularBioSystems. 2010. 11, 2122–2128. DOI: http://dx.doi.org/10.1039/c0mb00039f

  3. Emory University School of Medicine, Atlanta, Georgia, USA Mullasseril, P.; Hansen, K. B. Vanceet K. M. al. A subunit-selective potentiator of NR2C- and NR2D-containing NM DA receptors. Nature Communications. 2010. doi:10.1038/ncomms1085

  4. University of Shizuoka, Japan Matsuno, K.; Masuda, Y.; Ueharaet Y. al. Identification of a New Series of STAT3 Inhibitors by Virtual Screening. ACS Medicinal Chemistry Letters. 2010. 1, 8, 371-375. http://dx.doi.org/10.1021/ml1000273

  5. Fox Chase Chemical Diversity Center, Inc., Pennsylvania Center for Drug Discovery, Pennsylvania Biotechnology Center, Doylestown, USA; Fox Chase Cancer Center, Philadelphia, USA.  Reitz, A. B.; Ramirez, U. D.;  Stith, L.; Du, Y.; Smith,  G. R.; Jaffe E. K. Pseudomonas aeruginosa porphobilinogen synthase assembly state regulators: hit discovery and initial SAR studies. Arkivoc. 2010. 175-188.

  6. Konkuk University, Seoul, Republic of Korea Lee, K.; Jeong, Ki-W.; Lee Y. et al. Pharmacophore modeling and virtual screening studies for new VEGFR-2 kinase inhibitors. European J. of Med. Chemistry. 2010. 45, 11, 5420-5427. doi:10.1016/j.ejmech.2010.09.002

2009

  1. Chemistry Research Laboratories, Drug Discovery Research, Astellas Pharma Inc., Ibaraki, Japan Tanaka, N.; Ohno, K.; Tatsuya N. et al. Small-World Phenomena in Chemical Library Networks: Application to Fragment-Based Drug Discovery. J. Chem. Inf. Model. 2009. 49, 12, 2677-2686. DOI: 10.1021/ci900123v

  2. Universitàdegli Studi di Napoli, Napoli, Italy; The Scripps Research Institute, California. Cosconati, S.; Marinelli, L.; Trotta R. et al. Tandem Application of Virtual Screening and NMR Experiments in the Discovery of Brand New DNA Quadruplex Groove Binders. J. Am. Chem. Soc. 2009. 131, 45, 16336-16337. DOI: 10.1021/ja9063662

  3. Georgetown University School of Medicine, Washington, United States Ezgimen, M. D., Mueller, N. H.; Teramotoet T. al. Effects of detergents on the West Nile virus protease activity. Bioorganic & Medicinal Chemistry. 2009. 17, 3278-3282. doi:10.1016/j.bmc.2009.03.050

2008

  1. The Scripps Research Institute Molecular Screening Center, Scripps Florida, USA Roth, J.; Madoux, F.; Hodder, P.; Roush W. R. Synthesis of small molecule inhibitors of the orphan nuclear receptor steroidogenic factor-1 (NR5A1) based on isoquinolinone scaffolds. Bioorganic & Medicinal Chemistry Letters. 2008. 18, 2628–2632. DOI:http://dx.doi.org/10.1016/j.bmcl.2008.03.027

  2. St. Jude Children’s Research Hospital, Memphis, USA Shelat, A. A.; Guy R. K. A road less traveled by: Exploring a decade of Ellman chemistry. Bioorganic & Medicinal Chemistry. 2009. 17, 3, 1088-1093. doi:10.1016/j.bmc.2008.02.087

  3.  University of Minnesota, Minnesota Neres, J.; Wilson, D. J.:  Celia, L.;  Beck B. J.; Aldrich, C. C. Aryl Acid Adenylating Enzymes Involved in Siderophore Biosynthesis: Fluorescence Polarization Assay, Ligand Specificity, and Discovery of Non-nucleoside Inhibitors via High-Throughput Screening. Biochemistry. 2008. 47, 11735–11749 DOI: http://dx.doi.org/10.1021/bi801625b

  4. Harvard Medical School, Boston, USA Wagle, N.; Xian, J.; Shishova, E. Y. et al. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2identified by high-through­putscreening. Analytical Biochemistry. 2008. 383, 1, 85-92. DOI: http://dx.doi.org/10.1016/j.ab.2008.07.039

  5. Fox Chase Cancer Center, Philadelphia, USA Lawrence, S. H.; Ramirez, U. D.; Tang L. et al.Shape Shifting Leads to Small-Molecule Allosteric Drug Discovery. Chemistry & Biology Article. 2008. 15, 6, 586-596.  doi:10.1016/j.chembiol.2008.04.012

  6. Institute of Organic Chemistry and Chemical Biology; Goethe University Frankfurt-am-Main, Germany Hartenfeller, M.; Proschak, E.; Schuller, A.; Schneider,  G. Concept of Combinatorial De Novo Design ofDrug-like Molecules by Particle Swarm Optimization. Chem Bio. Drug. 2008. 72, 1, 16-26. DOI: 10.1111/j.1747-0285.2008.00672.x

  7. National University of Kaohsiung, Kaohsiung; Institute of Chemistry Academia Sinica Taipei; Chung Hsing University Taichung; National Chi Nan University Nantou; National Yunlin University of Science and Technology Yunlin, Taiwan Lin, Sh.-L.; Chan, Li-H.; Lee R.-H. et al. Highly Efficient Carbazole-π-Dimesitylborane Bipolar Fluorophores for Nondoped Blue Organic Light-Emitting Diodes. Advanced Materials Communications. 2008. 20, 20, 3947-3952. DOI: 10.1002/adma.200801023